Anti-Muscarinic Drugs May Reverse Peripheral Neuropathy

There is strong evidence that M1R could be a significant role-player in nerve degeneration in a litany of axonopathic diseases, including diabetic peripheral neuropathy. The study, published in the Journal of Clinical Investigation,1 findings demonstrate that by blocking the M1R receptor, researchers were able to prevent, and even reverse, the effects of peripheral neuropathy in mice, regardless of the underlying disease causing the neuropathy.

“The antimuscarinic drugs activate a regenerative pathway for nerve repair that can be induced under a variety of stressful conditions, ranging from diabetes to chemotherapy and HIV,” Paul Fernyhough, PhD, professor and acting head of the department of pharmacology and therapeutics at the University of Manitoba in Winnipeg, Canada, told Practical Pain Management.

For Dr. Fernyhough and his colleagues, pirenzepine was a selective M1R antagonist of particular interest,2 given its apparent dose-dependent action (3 to 100 nM) of increasing neurite outgrowth in rats. Similar success was found with another M1R antagonist, VU0255035, although structurally dissimilar to pirenzepine.

Next Page

Be the first to comment

Leave a Reply

Your email address will not be published.